Walkthrough: a typical contribution
There are a lot of ways to contribute to the rust compiler, including fixing bugs, improving performance, helping design features, providing feedback on existing features, etc. This chapter does not claim to scratch the surface. Instead, it walks through the design and implementation of a new feature. Not all of the steps and processes described here are needed for every contribution, and I will try to point those out as they arise.
In general, if you are interested in making a contribution and aren't sure where to start, please feel free to ask!
Overview
The feature I will discuss in this chapter is the ?
Kleene operator for
macros. Basically, we want to be able to write something like this:
macro_rules! foo {
($arg:ident $(, $optional_arg:ident)?) => {
println!("{}", $arg);
$(
println!("{}", $optional_arg);
)?
}
}
fn main() {
let x = 0;
foo!(x); // ok! prints "0"
foo!(x, x); // ok! prints "0 0"
}
So basically, the $(pat)?
matcher in the macro means "this pattern can occur
0 or 1 times", similar to other regex syntaxes.
There were a number of steps to go from an idea to stable rust feature. Here is a quick list. We will go through each of these in order below. As I mentioned before, not all of these are needed for every type of contribution.
- Idea discussion/Pre-RFC A Pre-RFC is an early draft or design discussion of a feature. This stage is intended to flesh out the design space a bit and get a grasp on the different merits and problems with an idea. It's a great way to get early feedback on your idea before presenting it the wider audience. You can find the original discussion here.
- RFC This is when you formally present your idea to the community for consideration. You can find the RFC here.
- Implementation Implement your idea unstabley in the compiler. You can find the original implementation here.
- Possibly iterate/refine As the community gets experience with your
feature on the nightly compiler and in
libstd
, there may be additional feedback about design choice that might be adjusted. This particular feature went through a number of iterations. - Stabilization When your feature has baked enough, a rust team member may propose to stabilize it. If there is consensus, this is done.
- Relax Your feature is now a stable rust feature!
Pre-RFC and RFC
NOTE: In general, if you are not proposing a new feature or substantial change to rust or the ecosystem, you don't need to follow the RFC process. Instead, you can just jump to implementation.
You can find the official guidelines for when to open an RFC here.
An RFC is a document that describes the feature or change you are proposing in detail. Anyone can write an RFC; the process is the same for everyone, including rust team members.
To open an RFC, open a PR on the rust-lang/rfcs repo on GitHub. You can find detailed instructions in the README.
Before opening an RFC, you should do the research to "flesh out" your idea. Hastily-proposed RFCs tend not to be accepted. You should generally have a good description of the motivation, impact, disadvantages, and potential interactions with other features.
If that sounds like a lot of work, it's because it is. But no fear! Even if you're not a compiler hacker, you can get great feedback by doing a pre-RFC. This is an informal discussion of the idea. The best place to do this is internals.rust-lang.org. Your post doesn't have to follow any particular structure. It doesn't even need to be a cohesive idea. Generally, you will get tons of feedback that you can integrate back to produce a good RFC.
(Another pro-tip: try searching the RFCs repo and internals for prior related ideas. A lot of times an idea has already been considered and was either rejected or postponed to be tried again later. This can save you and everybody else some time)
In the case of our example, a participant in the pre-RFC thread pointed out a syntax ambiguity and a potential resolution. Also, the overall feedback seemed positive. In this case, the discussion converged pretty quickly, but for some ideas, a lot more discussion can happen (e.g. see this RFC which received a whopping 684 comments!). If that happens, don't be discouraged; it means the community is interested in your idea, but it perhaps needs some adjustments.
The RFC for our ?
macro feature did receive some discussion on the RFC thread
too. As with most RFCs, there were a few questions that we couldn't answer by
discussion: we needed experience using the feature to decide. Such questions
are listed in the "Unresolved Questions" section of the RFC. Also, over the
course of the RFC discussion, you will probably want to update the RFC document
itself to reflect the course of the discussion (e.g. new alternatives or prior
work may be added or you may decide to change parts of the proposal itself).
In the end, when the discussion seems to reach a consensus and die down a bit, a rust team member may propose to move to FCP with one of three possible dispositions. This means that they want the other members of the appropriate teams to review and comment on the RFC. More discussion may ensue, which may result in more changes or unresolved questions being added. At some point, when everyone is satisfied, the RFC enters the "final comment period" (FCP), which is the last chance for people to bring up objections. When the FCP is over, the disposition is adopted. Here are the three possible dispositions:
- Merge: accept the feature. Here is the proposal to merge for our
?
macro feature. - Close: this feature in its current form is not a good fit for rust. Don't be discouraged if this happens to your RFC, and don't take it personally. This is not a reflection on you, but rather a community decision that rust will go a different direction.
- Postpone: there is interest in going this direction but not at the moment. This happens most often because the appropriate rust team doesn't have the bandwidth to shepherd the feature through the process to stabilization. Often this is the case when the feature doesn't fit into the team's roadmap. Postponed ideas may be revisited later.
When an RFC is merged, the PR is merged into the RFCs repo. A new tracking
issue is created in the rust-lang/rust repo to track progress on the feature
and discuss unresolved questions, implementation progress and blockers, etc.
Here is the tracking issue on for our ?
macro feature.
Implementation
To make a change to the compiler, open a PR against the rust-lang/rust repo.
Depending on the feature/change/bug fix/improvement, implementation may be relatively-straightforward or it may be a major undertaking. You can always ask for help or mentorship from more experienced compiler devs. Also, you don't have to be the one to implement your feature; but keep in mind that if you don't it might be a while before someone else does.
For the ?
macro feature, I needed to go understand the relevant parts of
macro expansion in the compiler. Personally, I find that improving the
comments in the code is a helpful way of making sure I understand
it, but you don't have to do that if you don't want to.
I then implemented the original feature, as described in the RFC. When
a new feature is implemented, it goes behind a feature gate, which means that
you have to use #![feature(my_feature_name)]
to use the feature. The feature
gate is removed when the feature is stabilized.
Most bug fixes and improvements don't require a feature gate. You can just make your changes/improvements.
When you open a PR on the rust-lang/rust, a bot will assign your PR to a
review. If there is a particular rust team member you are working with, you can
request that reviewer by leaving a comment on the thread with r? @reviewer-github-id
(e.g. r? @eddyb
). If you don't know who to request,
don't request anyone; the bot will assign someone automatically.
The reviewer may request changes before they approve your PR. Feel free to ask questions or discuss things you don't understand or disagree with. However, recognize that the PR won't be merged unless someone on the rust team approves it.
When your review approves the PR, it will go into a queue for yet another bot
called @bors
. @bors
manages the CI build/merge queue. When your PR reaches
the head of the @bors
queue, @bors
will test out the merge by running all
tests against your PR on Travis CI. This takes about 2 hours as of this
writing. If all tests pass, the PR is merged and becomes part of the next
nightly compiler!
There are a couple of things that may happen for some PRs during the review process
- If the change is substantial enough, the reviewer may request an FCP on the PR. This gives all members of the appropriate team a chance to review the changes.
- If the change may cause breakage, the reviewer may request a crater run. This compiles the compiler with your changes and then attempts to compile all crates on crates.io with your modified compiler. This is a great smoke test to check if you introduced a change to compiler behavior that affects a large portion of the ecosystem.
- If the diff of your PR is large or the reviewer is busy, your PR may have some merge conflicts with other PRs that happen to get merged first. You should fix these merge conflicts using the normal git procedures.
If you are not doing a new feature or something like that (e.g. if you are fixing a bug), then that's it! Thanks for your contribution :)
Refining your implementation
As people get experience with your new feature on nightly, slight changes may
be proposed and unresolved questions may become resolved. Updates/changes go
through the same process for implementing any other changes, as described
above (i.e. submit a PR, go through review, wait for @bors
, etc).
Some changes may be major enough to require an FCP and some review by rust team members.
For the ?
macro feature, we went through a few different iterations after the
original implementation: 1, 2, 3.
Along the way, we decided that ?
should not take a separator, which was
previously an unresolved question listed in the RFC. We also changed the
disambiguation strategy: we decided to remove the ability to use ?
as a
separator token for other repetition operators (e.g. +
or *
). However,
since this was a breaking change, we decided to do it over an edition boundary.
Thus, the new feature can be enabled only in edition 2018. These deviations
from the original RFC required another
FCP.
Stabilization
Finally, after the feature had baked for a while on nightly, a language team member moved to stabilize it.
A stabilization report needs to be written that includes
- brief description of the behavior and any deviations from the RFC
- which edition(s) are affected and how
- links to a few tests to show the interesting aspects
The stabilization report for our feature is here.
After this, a PR is made to remove the feature gate, enabling the feature by default (on the 2018 edition). A note is added to the Release notes about the feature.
Steps to stabilize the feature can be found at Stabilizing Features.